46 research outputs found

    Seasonal Movements, Migratory Behavior, and Site Fidelity of West Indian Manatees along the Atlantic Coast of the United States as Determined by Radio-telemetry

    Get PDF
    The study area encompassed the eastern coasts of Florida, Georgia, and South Carolina, including inland waterways such as the St. Johns River (Fig. 1). Manatees inhabited the relatively narrow band of water that lies between the barrier beaches and the mainland, occasionally venturing into the ocean close to shore. Between Miami and Fernandina Beach, Florida, 19 inlets provided manatees with corridors between the intracoastal waters and the Atlantic Ocean; the distance between adjacent inlets averaged 32 km(SD = 24 km) and varied from 3 to 88 km. Habitats used by manatees along this 900-km stretch ofcoastline varied widely and included estuaries, lagoons, rivers and creeks, shallow bays and sounds, and ocean inlets. Salinities in most areas were brackish, but ranged from completely fresh to completely marine. The predominant communities of aquatic vegetation also varied geographically and with salinity: seagrass meadows and mangrove swamps in brackish and marine waters along the southern half of peninsular Florida; salt marshes in northeastern Florida and Georgia; benthic macroalgae in estuarine and marine habitats; and a variety of submerged, floating, and emergent vegetation in freshwater rivers, canals, and streams throughout the region. Radio-telemetry has been used successfully to track manatees in other regions ofFlorida (Bengtson 1981, Powell and Rathbun 1984, Lefebvre and Frohlich 1986, Rathbun et al. 1990) and Georgia (Zoodsma 1991), but these early studies relied primarily on conventional VHF (very high frequency) transmitters and were limited in their spatial and temporal scope (see O'Shea and Kochman 1990 for overview). Typically, manatees were tagged at a thermal refuge in the winter and then tracked until the tag detached, usually sometime between the spring and fall of the same year. Our study differs from previous research on manatee movements in several important respects. First, we relied heavily on data from satellite-monitored transmitters using the Argos system, which yielded a substantially greater number of locations and more systematic collection of data compared to previous VHF tracking studies (Deutsch et al. 1998). Second, our tagging and tracking efforts encompassed the entire range of manatees along the Atlantic coast, from the Florida Keys to South Carolina, so inferences were not limited to a small geographic area. Third, we often used freshwater to lure manatees to capture sites, which allowed tagging in all months of the year; this provided more information about summer movement patterns than had previous studies which emphasized capture and tracking at winter aggregations. Finally, the study spanned a decade, and success in retagging animals and in replacing transmitters allowed long-term tracking ofmany individuals. This provided the opportunity to investigate variation in seasonal movements, migratory behavior, and site fidelity across years for individual manatees. (254 page document.

    Health Assessment and Seroepidemiologic Survey of Potential Pathogens in Wild Antillean Manatees (Trichechus manatus manatus)

    Get PDF
    The Antillean manatee (Trichechus manatus manatus), a subspecies of the West Indian manatee, inhabits fresh, brackish, and warm coastal waters distributed along the eastern border of Central America, the northern coast of South America, and throughout the Wider Caribbean Region. Threatened primarily by human encroachment, poaching, and habitat degradation, Antillean manatees are listed as endangered by the International Union for the Conservation of Nature. The impact of disease on population viability remains unknown in spite of concerns surrounding the species' ability to rebound from a population crash should an epizootic occur. To gain insight on the baseline health of this subspecies, a total of 191 blood samples were collected opportunistically from wild Antillean manatees in Belize between 1997 and 2009. Hematologic and biochemical reference intervals were established, and antibody prevalence to eight pathogens with zoonotic potential was determined. Age was found to be a significant factor of variation in mean blood values, whereas sex, capture site, and season contributed less to overall differences in parameter values. Negative antibody titers were reported for all pathogens surveyed except for Leptospira bratislava, L. canicola, and L. icterohemorrhagiae, Toxoplasma gondii, and morbillivirus. As part of comprehensive health assessment in manatees from Belize, this study will serve as a benchmark aiding in early disease detection and in the discernment of important epidemiologic patterns in the manatees of this region. Additionally, it will provide some of the initial tools to explore the broader application of manatees as sentinel species of nearshore ecosystem health

    Ancient convergent losses of Paraoxonase 1 yield potential risks for modern marine mammals

    Get PDF
    Mammals diversified by colonizing drastically different environments, with each transition yielding numerous molecular changes, including losses of protein function. Though not initially deleterious, these losses could subsequently carry deleterious pleiotropic consequences. We have used phylogenetic methods to identify convergent functional losses across independent marine mammal lineages. In one extreme case, Paraoxonase 1 (PON1) accrued lesions in all marine lineages, while remaining intact in all terrestrial mammals. These lesions coincide with PON1 enzymatic activity loss in marine species’ blood plasma. This convergent loss is likely explained by parallel shifts in marine ancestors’ lipid metabolism and/or bloodstream oxidative environment affecting PON1’s role in fatty acid oxidation. PON1 loss also eliminates marine mammals’ main defense against neurotoxicity from specific man-made organophosphorus compounds, implying potential risks in modern environment

    Ancient convergent losses of Paraoxonase 1 yield potential risks for modern marine mammals

    Get PDF
    Mammals diversified by colonizing drastically different environments, with each transition yielding numerous molecular changes, including losses of protein function. Though not initially deleterious, these losses could subsequently carry deleterious pleiotropic consequences. We have used phylogenetic methods to identify convergent functional losses across independent marine mammal lineages. In one extreme case, Paraoxonase 1 (PON1) accrued lesions in all marine lineages, while remaining intact in all terrestrial mammals. These lesions coincide with PON1 enzymatic activity loss in marine species’ blood plasma. This convergent loss is likely explained by parallel shifts in marine ancestors’ lipid metabolism and/or bloodstream oxidative environment affecting PON1’s role in fatty acid oxidation. PON1 loss also eliminates marine mammals’ main defense against neurotoxicity from specific man-made organophosphorus compounds, implying potential risks in modern environment

    Transcription factor Ap-2alpha is necessary for development of embryonic melanophores, autonomic neurons and pharyngeal skeleton in zebrafish

    Get PDF
    The genes that control development of embryonic melanocytes are poorly defined. Although transcription factor Ap-2a is expressed in neural crest (NC) cells, its role in development of embryonic melanocytes and other neural crest derivatives is unclear because mouse Ap-2a mutants die before melanogenesis. We show that zebrafish embryos injected with morpholino antisense oligonucleotides complementary to ap-2a (ap-2a MO) complete early morphogenesis normally and have neural crest cells. Expression of c-kit, which encodes the receptor for the Steel ligand, is reduced in these embryos, and, similar to zebrafish c-kit mutant embryos, embryonic melanophores are reduced in number and migration. The effects of ap-2a MO injected into heterozygous and homozygous c-kit mutants support the notion that Ap-2a works through C-kit and additional target genes to mediate melanophore cell number and migration. In contrast to c-kit mutant embryos, in ap-2a MO-injected embryos, melanophores are small and under-pigmented, and unexpectedly, analysis of mosaic embryos suggests Ap-2a regulates melanophore differentiation through cell non-autonomous targets. In addition to melanophore phenotypes, we document reduction of other neural crest derivatives in ap-2a MO-injected embryos, including jaw cartilage, enteric neurons, and sympathetic neurons. These results reveal that Ap-2a regulates multiple steps of melanophore development, and is required for development of other neuronal and nonneuronal neural crest derivatives.This work was supported by NIH grant HD22486 to J.S.E. and a Carver Foundation seed grant to R.A.C. C. d’., and M.A. were supported by grants ICM P99-137-f and Fondecyt 1031003. E.K.O. was supported by Grant T32 DC00040 (Bruce Gantz, PI)

    Time-Course of Changes in Inflammatory Response after Whole-Body Cryotherapy Multi Exposures following Severe Exercise

    Get PDF
    The objectives of the present investigation was to analyze the effect of two different recovery modalities on classical markers of exercise-induced muscle damage (EIMD) and inflammation obtained after a simulated trail running race. Endurance trained males (n = 11) completed two experimental trials separated by 1 month in a randomized crossover design; one trial involved passive recovery (PAS), the other a specific whole body cryotherapy (WBC) for 96 h post-exercise (repeated each day). For each trial, subjects performed a 48 min running treadmill exercise followed by PAS or WBC. The Interleukin (IL) -1 (IL-1), IL-6, IL-10, tumor necrosis factor alpha (TNF-α), protein C-reactive (CRP) and white blood cells count were measured at rest, immediately post-exercise, and at 24, 48, 72, 96 h in post-exercise recovery. A significant time effect was observed to characterize an inflammatory state (Pre vs. Post) following the exercise bout in all conditions (p<0.05). Indeed, IL-1β (Post 1 h) and CRP (Post 24 h) levels decreased and IL-1ra (Post 1 h) increased following WBC when compared to PAS. In WBC condition (p<0.05), TNF-α, IL-10 and IL-6 remain unchanged compared to PAS condition. Overall, the results indicated that the WBC was effective in reducing the inflammatory process. These results may be explained by vasoconstriction at muscular level, and both the decrease in cytokines activity pro-inflammatory, and increase in cytokines anti-inflammatory

    Depression und Arbeitswelt

    Full text link
    In der WHO-Charta von Ottawa aus dem Jahre 1986 steht zu lesen: >>Die Art und Weise, wie eine Gesellschaft die Arbeit und die Arbeitsbedingungen organisiert, sollte eine Quelle der Gesundheit und nicht der Krankheit sein.<< Diese Forderung ist in der spätmodernen Arbeitsgesellschaft nach wie vor nicht eingelöst. Und Erwerbsarbeit ist kein Lebensbereich wie jeder andere. Über das Einkommen sichert sie das materielle Auskommen der Gesellschaftsmitglieder und ermöglicht ihnen, sich sozial zu integrieren und zu partizipieren. Deshalb sind Arbeitsplatzunsicherheit (Sverke, Hellgren u. N ä swall, 2006) und Arbeitslosigkeit (Paulu. Moser, 2009) kritische Lebensereignisse, die kränken undkrank machen. Was die Arbeitsplatzunsicherheit betrifft, so ist es nicht allein die Sorge, den Arbeitsplatz zu verlieren, die belastet. Gleiches gilt für die verbreitete Erfahrung, dass sich die Arbeitsbedingungen der Arbeitnehmer und Arbeitnehmerinnen auf Kosten ihrer psychischen Gesundheit gravierend verschlechtern. Deshalb muss es alarmieren, wenn Besch ä ftigtenbefragungen gegenw ä rtig darauf hinweisen, dass etwa jeder Zweite seine gesundheitlichen Probleme in einen ursächlichen Zusammenhang mit den Arbeitsbedingungen an seinem Arbeitsplatz bringt (Zok, 2010)

    Internal parasites of the two subspecies of the West Indian manatee Trichechus manatus

    Get PDF
    The West Indian manatee Trichechus manatus is divided into 2 subspecies: the Antillean (T. m. manatus) and Florida (T. m. latirostris) manatees. This study reports sample prevalence of manatee parasites from populations of these 2 subspecies in different geographical locations. Although necropsy is a valuable diagnostic tool for parasite infections, the need for antemortem diagnostic techniques is important. Fecal samples collected during necropsies of Antillean manatees (n = 3) in Puerto Rico and Florida manatees (n = 10) in Crystal River, Florida, as well as from live-captured Florida manatees (n = 11) were evaluated using centrifugal flotation with sucrose and ethyl acetate sedimentation to compare parasites from each of the populations. Although both fecal examination methods provided similar results, the centrifugal flotation method required less time for diagnosis. The most common parasite eggs found in both populations included the trematodes Pulmonicola cochleotrema and Nudacotyle undicola, oocysts of the coccidian Eimeria spp., and eggs of the ascarid Heterocheilus tunicatus. Eggs of the trematode Chiorchis groschafti were found in both populations of manatees; however, eggs of a related species, Chiorchis fabaceus, were abundant in the Florida samples, but not found in Puerto Rico popu lations. Trematode eggs of Moniligerum blairi were found in both populations, but were more common in the Florida manatee (42%) than the Antillean manatee (33%). To our knowledge, this is the first report of both Eimeria manatus and Eimeria nodulosa oocysts in Antillean manatees from Puerto Rico

    Seasonal response of ghrelin, growth hormone, and insulin-like growth factor I in the free-ranging Florida manatee (Trichechus manatus latirostris)

    No full text
    Seasonal changes in light, temperature, and food availability stimulate a physiological response in an animal. Seasonal adaptations are well studied in Arctic, Sub-Arctic, and hibernating mammals; however, limited studies have been conducted in sub-tropical species. The Florida manatee (Trichechus manatus latirostris), a sub-tropical marine mammal, forages less during colder temperatures and may rely on adipose stores for maintenance energy requirements. Metabolic hormones, growth hormone (GH), insulin-like growth factor (IGF)-I, and ghrelin influence growth rate, accretion of lean and adipose tissue. They have been shown to regulate seasonal changes in body composition. The objective of this research was to investigate manatee metabolic hormones in two seasons to determine if manatees exhibit seasonality and if these hormones are associated with seasonal changes in body composition. In addition, age related differences in these metabolic hormones were assessed in multiple age classes. Concentrations of GH, IGF-I, and ghrelin were quantified in adult manatee serum using heterologous radioimmunoassays. Samples were compared between short (winter) and long (summer) photoperiods (n = 22 male, 20 female) and by age class (adult, juvenile, and calf) in long photoperiods (n = 37). Short photoperiods tended to have reduced GH (p = 0.08), greater IGF-I (p = 0.01), and greater blubber depth (p = 0.03) compared with long photoperiods. No differences were observed in ghrelin (p = 0.66). Surprisingly, no age related differences were observed in IGF-I or ghrelin concentrations (p \u3e 0.05). However, serum concentrations of GH tended (p = 0.07) to be greater in calves and juveniles compared with adults. Increased IGF-I, greater blubber thickness, and reduced GH during short photoperiod suggest a prioritization for adipose deposition. Whereas, increased GH, reduced blubber thickness, and decreased IGF-I in long photoperiod suggest prioritization of lean tissue accretion. Hormone profiles in conjunction with difference in body composition between photoperiods indicate seasonal adjustments in manatee nutrient partitioning priorities
    corecore